Generalized Q-functions

نویسنده

  • T. B. Smith
چکیده

The modulus squared of a class of wave functions defined on phase space is used to define a generalized family of Q or Husimi functions. A parameter λ specifies orderings in a mapping from the operator |ψ〉〈σ| to the corresponding phase space wave function, where σ is a given fiducial vector. The choice λ = 0 specifies the Weyl mapping and the Q-function so obtained is the usual one when |σ〉 is the vacuum state. More generally, any choice of λ in the range (−1, 1) corresponds to orderings varying between standard and anti-standard. For all such orderings the generalized Q-functions are non-negative by construction. They are shown to be proportional to the expectation of the system state ρ̂ with respect to a generalized displaced squeezed state which depends on λ and position (p, q) in phase space. Thus, when a system has been prepared in the state ρ̂, a generalized Q-function is proportional to the probability of finding it in the generalized squeezed state. Any such Q-function can also be written as the smoothing of the Wigner function for the system state ρ̂ by convolution with the Wigner function for the generalized squeezed state. PACS: 03.65.Ca; 03.65.Ta

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using padic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim’s h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question ...

متن کامل

Generalized q - Taylor ’ s series and applications

Abstract A generalized q-Taylor’s formula in fractional q-calculus is established and used in deriving certain q-generating functions for the basic hypergeometric functions and basic Fox’s H-function. 2010 Mathematics Subject Classification: 33D45, 26A33 and 33D90.

متن کامل

Generalized bent functions - sufficient conditions and related constructions

The necessary and sufficient conditions for a class of functions f : Z 2 → Zq, where q ≥ 2 is an even positive integer, have been recently identified for q = 4 and q = 8. In this article we give an alternative characterization of the generalized Walsh-Hadamard transform in terms of the Walsh spectra of the component Boolean functions of f , which then allows us to derive sufficient conditions t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006